Gauss map in a sphere

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Noncommutative Gauss Map

The aim of this paper is to transfer the Gauss map, which is a Bernoulli shift for continued fractions, to the noncommutative setting. We feel that a natural place for such a map to act is on the AF algebra A considered separately by F. Boca and D. Mundici. The center of A is isomorphic to C[0, 1], so we first consider the action of the Gauss map on C[0, 1] and then extend the map to A and show...

متن کامل

Gauss Sphere Problem with Polynomials

This paper provides an estimate of the sum of a homogeneous polynomial P over the lattice points inside a sphere of radius R. The polynomial P is assumed to be of degree ν and have zero mean over the sphere. It is proved that ∑ x∈Z3 |x|≤R P (x) = O ,P (R ν+83/64+ ) ∗MIT, supported by Summer Program of Undergraduate Research

متن کامل

L_1 operator and Gauss map of quadric surfaces

The quadrics are all surfaces that can be expressed as a second degree polynomialin x, y and z. We study the Gauss map G of quadric surfaces in the 3-dimensional Euclidean space R^3 with respect to the so called L_1 operator ( Cheng-Yau operator □) acting on the smooth functions defined on the surfaces. For any smooth functions f defined on the surfaces, L_f=tr(P_1o hessf), where P_1 is t...

متن کامل

The Gauss Map and the Dual Variety of Real-analytic Submanifolds in a Sphere or in a Hyperbolic Space

We study the Gauss map and the dual variety of a real-analytic immersion of a connected compact real-analytic manifold into a sphere or into a hyperbolic space. The dual variety is defined to be the set of all normal directions of the immersion. First, we show that the image of the Gauss map characterizes the manifold. Also we show that the dual variety characterizes the manifold. Besides, dual...

متن کامل

Ramification Estimates for the Hyperbolic Gauss Map

We give the best possible upper bound on the number of exceptional values and totally ramified value number of the hyperbolic Gauss map for pseudo-algebraic Bryant surfaces and some partial results on the Osserman problem for algebraic Bryant surfaces. Moreover, we study the value distribution of the hyperbolic Gauss map for complete constant mean curvature one faces in de Sitter three-space.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Kodai Mathematical Journal

سال: 1970

ISSN: 0386-5991

DOI: 10.2996/kmj/1138846062